

Dropmore Infant School
Written Calculation Policy

Addition
Children need to understand the concept of addition as:

- Combining two or more groups to give a total or sum.
-Increasing an amount

They also need to understand and work with certain principles:
-Inverse of subtraction
-It is commutative $-5+3=3+5$
\bullet-It is associative $-5+3+7=5+(3+7)$

Stage 1- Addition - counting altogether (EYFS)			
Teaching	Examples	Success criteria	Skill and knowledge
Children should count two sets of quantities and find how many altogether.		- Children point to each object as they count (touch count)	- Understanding that a group changes quantity when something is added
Children are taught that addition is combining of two or more amounts.		Vocabulary	Resources
They begin by counting all of the items in the groups. Children are encouraged to think of a mental image of the size of numbers.		Add Plus More Greater quantity Addition Altogether Increasing	Counters Beads Counting objects Unifix cubes

Stage 4 - Addition - using base 10 to add a 2-digit number and tens (Y1/Y2)

Teaching	Examples	Success criteria	Skill and knowledge
Children use base 10 equipment to support their developing understanding of addition	Children should draw the diagrams of the equipment.	- Start with the greatest number - Split into tens and ones - Count on - Find the solution	Counting forwards in ones - Counting using one to one correspondence - Being able to identify the largest quantity - Understanding place value of tens and ones - Understanding of symbols = and +
		Vocabulary	Resources
		Add Plus More Sum Addition Increasing Tens Ones Units Altogether Count on What comes next?	Base 10 cubes (including interlinking 1 cm cubes)
Children should also start to draw their own representations of base 10 equipment using lines for tens and dots for ones.			Other resources may be used to support this but must reflect place value of tens and ones: Place value Counters
	$/ / / / / \ddots^{\bullet}=54$		Bead strings Unifix cubes Numicon Cuisenaire

Stage 5 - Addition - Using Base 10 - 2-digit addition not crossing the boundary (Y2)

Teaching	Examples	Success criteria	Skill and knowledge
Children continue to use base 10 equipment to support their calculations, with an increasing number of digits Children should be taught how to record their own drawing of base 10 equipment using lines for tens and dots for ones.	$34+23$	- Draw/ collect equipment - Count the ones first - Count the tens - Add the tens and ones together - Find the solution	Counting forwards in ones and tens - Understanding place value of tens and ones - Understanding which digit represents tens and which represents ones - Partition into tens and ones - Ones must be counted first (for the purposes of teaching exchanging)
	Children should draw the diagrams of the	Vocabulary	Resources
	equipment.	Add Plus More Sum Addition Increasing Tens Ones Digit Partition Multiples Multiples of 10	Base 10 cubes (including interlinking 1 cm cubes) Other resources may be used to support this but must reflect place value of tens and ones: Place value Counters Bead strings Unifix cubes Numicon Cuisenaire

Stage 6 - Addition - Using Base 10 - 2-digit addition crossing the boundary (Y2)

Teaching	Examples	Success criteria	Skill and knowledge
Children continue to use base 10 equipment to support their calculations, with an increasing number of digits and with crossing the tens boundary.	Children should draw the diagrams of the equipment and show their exchange	- Draw/ collect equipment - Count the ones first - Exchange up the ones for ten if there are more than 10 ones. - Count the tens - Add the tens and ones together - Find the solution	- Counting forwards in ones and tens - Understanding place value of tens and ones - Understanding which digit represents tens and which represents ones - Partition into tens and ones - Ones must be counted first (for the purposes of teaching exchanging)
	$1 /$	Vocabulary	Resources
Once children have exchange they then follow the success criteria		Add Plus More Sum Addition Increasing Tens Ones Digit Partition Exchanging Crossing the boundary	Base 10 cubes (including interlinking 1 cm cubes) Other resources may be used to support this but must reflect place value of tens and ones: Place value Counters Bead strings Unifix cubes Numicon Cuisenaire

Stage 7 - Addition - beginning to use the column method (Y2/ Y3)

Teaching
Children are applying prior

Children will be taught to exchange up and change 10 ones/ units for a ten piece.

Once children have exchanged up they then follow the success criteria

Children use place value grid to represent their numbers, they then exchange ten ones for a ten piece and move this to the correct column. They then follow the success criteria.

Exchanging/ crossing the boundary-

- Draw/ collect equipment
- Count the ones first
- Exchange up the ones for ten if there are more than 10 ones.
- Count the tens
- Add the tens and ones together
- Find the solution

\section*{| Vocabulary |
| :--- |
| Add Plus More Sum Addition |} Increasing Tens Ones Digit Partition Exchanging Crossing the boundary Column Place Value Carrying Over

Skill and knowledge and tens

- Understanding place value of tens and ones
- Understanding which digit represents tens and which represents ones
- Partition into tens and ones
- Ones must be counted first (for the purposes of teaching exchanging)

Resources

Base 10 cubes (including interlinking 1 cm cubes)
Other resources may be used to support this but must reflect place value of tens and ones:
Place value Counters
Bead strings
Unifix cubes
Numicon
Cuisenaire

Subtraction
Children need to understand the concept of subtraction as:
-Removal of an amount from a larger group (take away)

- Comparison of two amounts (difference)

They also need to understand and work with certain principles:
-Inverse of addition
-It is NOT commutative - 5-3 = 3-5
\bullet-It is NOT associative - (9-3)-2=9-(3-2)

Stage 1 - Subtraction - Taking away (EYFS)			
Teaching	Examples	Success criteria	Skill and knowledge
Children will take the required amount of objects by taking one at a time. Children will the count how many objects are left. Children are encouraged to think of a mental image of the size of numbers.	$9-4$	- Children remove an object one at a time to the required amount - Children point to each object as they count (touch count)	Understanding that a group changes quantity when something is taken away - Encourage children to think of a mental image of the value of the number (quantity) - Knowing the numerical value of a quantity e.g. recognising and identifying the '4' piece of numicon without touch counting the holes
	$\begin{array}{llllll}2 & 3 & 4 & 5\end{array}$	Vocabulary	Resources
		Subtract Take away Less Fewer Smaller quantity Subtraction How many left? Decreasing	Counters Beads Counting objects Unifix cubes

Stage 2 - Subtraction - counting back (Y1)			
Teaching	Examples	Success criteria	Skill and knowledge
Children will develop this skill of taking away by counting back in sequence as they 'take away' an item. Children learn to think about subtraction as 'take away' in practical and real-life situations. They begin to record number sentences. E.g. $9-4=5$	Numicon is a valuable resource that can be used to support counting back. A cover is used to show the removal of the number	- Start with the greatest number - Take away one item at a time - Say out loud the number each time you count back.	- Knowing the numerical value of a quantity e.g. recognising and identifying the ' 4 ' piece of numicon without touch counting the holes - Being able to count backwards in ones
		Vocabulary	Resources
		Subtract Take away Less Fewer Smaller quantity Subtraction How many left? Decreasing Count back What comes before?	Counters Beads Counting objects Unifix cubes

Stage 3 - Subtraction - Base 10 and Number lines/ tracks (Y1)

Teaching	Examples	Success criteria	Skill and knowledge
Children use base 10 equipment alongside a number track to develop their understanding of subtraction.		- Start with the greatest number - Take away one item at a time - Say out loud the number each time you count back.	- Counting backwards in ones - Partition numbers in different ways e.g. 5 could be partitioned as 3 and 2 or 1 and 4 - Know and quickly derive number bonds up to and including 10
Number tracks are preferable to number lines as they give children parameters to place their objects within.		Vocabulary	Resources
	1. 13 cubes are lined up 2. 4 cubes are removed from the end of the line. Children are encouraged to count back through the sequence of numbers each time they remove one cube. 3. The number track supports learning as the children can use this check they have counted back to the correct number.	Subtract Take away Less Fewer Smaller quantity Subtraction How many left? Decreasing Count back What comes before? Partition Number facts Subtraction facts What do you know? Tens Ones	Base 10 Number tracks Number lines Other place value objects may be used alongside the main resources.

Stage 4 - Subtraction - Base 10 with a 2-digit number and subtracting ones (Y2)

Teaching
Children use base 10 to

Children are taught to draw the base ten using a line for a ten and a dot for a one.

Subtraction becomes more difficult for children when crossing the boundary when exchanging is needed.

When a number contains multiple tens children find it confusing to suggest subtracting ones. Where there is a greater amount of ones that needs to be subtracted a ten should be exchanged down for 10 ones.
Examples
No exchange down:

Exchange down:
 $1 \begin{aligned} & 0 \\ & 00 \\ & 00 \\ & 00 \\ & 00\end{aligned}$
$=1$ ten and 6 ones
$=16$

Success criteria

- Start with the greatest number
- Exchange down a ten if needed
- Subtract ones
- Subtract tens

Vocabulary
Subtract Take away Less Fewer
Smatler

Skill and knowledge

- Counting backwards in ones
- Partitioning numbers into 10 s and 1 s
- Starting quantity is plotted at the end of a number line
Resources

Base 10
Number tracks
Number lines
Other place value objects may be used alongside the main resources.

Stage 5 - Subtraction - Subtracting using Base 10 with two 2-digit numbers (Y2)

Teaching	Examples	Success criteria	Skill and knowledge
Children use base 10 to represent 2-digit numbers and to subtract them from the first number. Children are taught to draw the base ten using a line for a ten and a dot for a one. It is highly encouraged for children to use jottings and diagrams to support them. Subtraction becomes more difficult for children when crossing the boundary when exchanging is needed. This is explained in stage 6.	No exchange down:	- Start with the greatest number - Count the ones to see if exchanging is needed - Exchange down a ten if needed - Subtract ones - Subtract tens	- Counting backwards in tens - Understanding of place value of tens and ones - Starting quantity is plotted at the end of a number line
	/R// $\bullet \bullet \cdot 3$ ters and 1 are	Vocabulary	Resources
		Subtract Take away Less Fewer Smaller quantity Subtraction How many left? Decreasing Count back What comes before? Partition Number facts Subtraction facts What do you know? Tens Ones Jumps of 10 Multiples Multiples of 10	Base 10 Number tracks Number lines Other place value objects may be used alongside the main resources.

Teaching
Children use base 10 to
represent 2-digit number
and to subtract them fro
the first number.
Children are taught to

It is highly encouraged for children to use jottings and diagrams to support them.

Subtraction becomes more difficult for children when crossing the boundary when exchanging is needed.
Children are taught to draw/collect equipment of only the first number. Then to count the ones to check if they need to exchange. The exchange of a ten piece to ten ones takes place. Then children carry on the rest of the success criteria.

Success criteria

- Start with the greatest number
- Count the ones to see if exchanging is needed
- Exchange down a ten if needed
- Subtract ones
- Subtract tens

Vocabulary	Resources
Subtract Take away Less Fewer	Base 10
Smaller quantity Subtraction How	
many left? Decreasing Count	
back What comes before?	Number tracks
Number lines	

Other place value objects may be used alongside the main resources.

Stage 7 - Subtraction - Column Subtraction (Y2/Y3)

Teaching	Examples			
Children are applying prior	No exchange down:			
learning of partitioning	Tens	Ones	T 0	T 0
into writing the		*****	45	45
subtraction in the column	迷		-12	-12
method.	1			(3)

Children will be taught to exchange down and change 1 ten for ten ones.

Once children have exchanged up they then follow the success criteria

Children use place value grid to represent their numbers, they then exchange 1 ten for ten ones and move these to the correct column. They then follow the success criteria.

Multiplication
Children need to understand the concept of multiplication as:
-Repeated addition

- Can be represented as an array

They also need to understand and work with certain principles:
-It is the inverse of division
-It is commutative
\bullet-It is associative
$\left.\begin{array}{|l|l|l|l|}\hline \text { Stage } 1 \text { - Multiplication - Doubling (EYFS) } & \\ \hline \text { Teaching } & \text { Examples } & \text { Success criteria } & \text { Skill and knowledge } \\ \hline \begin{array}{l}\text { Children begin learning } \\ \text { about the concept of } \\ \text { multiplication through } \\ \text { doubling. } \\ \text { These will be practical, real } \\ \text { life situations. }\end{array} & \begin{array}{l}\text { The butterfly has the same number of spots on } \\ \text { both sides of the wings. }\end{array} & \begin{array}{l}\text { Touch counting where } \\ \text { needed. } \\ \text { Understanding the meaning } \\ \text { Understanguage 'same' } \\ \text { equivalence }\end{array} \\ \text { basic }\end{array}\right\}$

| Stage 3 - Multiplication - Arrays (Y2) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Teaching | Examples | | |
| Children use arrays to
 enable them to visualise
 the multiplication. | | | Skill and knowledge |

Stage 4 - Multiplication - Arrays using known facts(Y2)			
Teaching	Examples	Success criteria	Skill and knowledge
	0000000000 0000000000 0000000000	\bullet	- Double any multiple of 10 up to 100 • Understanding that doubling is adding any number to itself • Understanding that doubling is multiplying by 2 • Recall multiplication tables
		Vocabulary	Resources
	$\begin{array}{llll} 0 & 10 & 20 & 30 \end{array}$	Array Times Lots of Groups of Multiply Row Column Facts Repeat Product Multiple Factor	

Division
Children need to understand the concept of division as:

- Repeated subtraction

They also need to understand and work with certain principles:
-It is the inverse of multiplication

- It is NOT commutative
-It is NOT associative

Stage 1 - Division - halving (EYFS)			
Teaching	Examples	Success criteria	Skill and knowledge
Children should experience practical calculation opportunities involving equal groups and equal sharing.	A lady bird has 6 sports on its back. Can you share them equally between both sides?	-	- Understanding that halving is sharing into 2 groups equally. Understanding of equivalence Understanding that halving is splitting down the middle into 2
		Vocabulary	Resources
		Half Equal Same Split	

Stage 2 - Division - division as sharing (Y1/Y2)			
Teaching	Examples	Success criteria	Skill and knowledge
Children start their learning of division by sharing. Children may use the 'one for you and one for me' strategy until all the items have been given out. This strategy ensures sharing into equal groups.	12 divided by 2 12 gems are shared equally between 2 people. How many gems to they each get?	-	- Understanding the language and symbol for division - Know multiples of 25 and $10 \cdot$ Understand and apply related division facts e.g. 8 divided by $2=$ 4 so 80 divided by $2=40$
	000000000000 15 gems shared equally between 3 people. 	Vocabulary	Resources
		Equal Share Divide Divided by	
	000000000000000		
	They get 5 each.		

Stage 4 - Division - division as grouping using jottings (Y1/Y2)			
Teaching	Examples	Success criteria	Skill and knowledge
Children will begin to investigate ways to represent division calculations.	 There are 4 groups now.	-	- Know multiples of 2,5, 10 and $3 \cdot$ Understand and apply related division facts e.g. 8 divided by $2=4$ so 80 divided by $2=40$
circles to calculate their		Vocabulary	Resources
They many also use arrays to show the commutative representation between multiplication and division		Equal groups Groups of Divide Divided by Multiples	Numicon Counting objects Unifix Bead strings Counters Connecting cubes

Stage 5 - Division - division as grouping with remainders (Y2/ Y3)			
Teaching	Examples	Success criteria	Skill and knowledge
Children need to understand that division calculations sometimes have remainders. Depending on the question children may either need to leave the remainder as how many are left over or may have to round up or down.	There are four groups of 3 with one left over 13 divided by $3=4 \mathrm{r} 1$ Round DOWN: I have 13 p. sweets are $3 p$ each. How many can I buy? Remaining $1 p$ is not enough to by another sweet Round up: Apples are packed into boxes of 3. There are 13 apples how many boxes do I need? 1 remaining apple still needs to be in a box	\bullet	- Know multiples of 2,5, 10 and $3 \cdot$ Understand and apply related division facts e.g. 8 divided by $2=4$ so 80 divided by $2=40 \bullet$ Understanding quantities cannot always be split into equal groups with nothing left over
		Vocabulary	Resources
		Equal groups Groups of Divide Divided by Multiples Remainder Left Over	Numicon Counting objects Unifix Bead strings Counters Connecting cubes

